

CHRONIFER® Labor 17%

1.4104/AISI ≈430F – Hardenable free machining ferritic stainless steel

Attributes and particularities

The free machining CHRONIFER® Labor 17% ferritic stainless steel has an increased S-content to enhance its machinability. Thus, one of its main features is its good to very good machinability. It is significantly better than those of non-free machining martensitic stainless steels. To obtain an optimal corrosion resistance in water and water steam, the parts must previously be heat treated, polished, and passivized. This steel grade exhibits a fair corrosion resistance in weak alkaline solutions.

Uses

This free machining martensitic stainless steel is well adapted for the production of turned parts, such as bolts, nuts, screws and axles, as well as machined parts for general applications in the mechanical engineering.

Applicable standards

Material number 1.4104

ISO X14CrMoS 17

EN X14CrMoS 17 10088-3

DIN X14CrMoS 17 AISI/SAE/ASTM \approx AISI 430F AFNOR X14CrMoS 17 JIS \approx SUS 430 F

Chemical composition

(%_{wt})

C Ρ Si Mn S Cr Mo Ni Fe 0.10 max. 0.15 15.50 0.20 max. balance max. max. 0.17 1.00 1.50 0.04 0.35 17.50 0.60 0.50

Dimensions and tolerances

Bars Ø < 2.00 mm: ISO h8
 Bars Ø ≥ 2.00 mm: ISO h7 (h6)

Out of roundness: ½ diameter tolerance

Other tolerances on request

Executions and delivery conditions

Standard: ø in 3 m bars and coils for Escomatic:

Bars ≥ 2.00 mm: cold drawn, ground, polished, Ra 0.4 μ (N5)

pointed and chamfered

Bars < 2.00 mm: cold drawn

Other executions on request

Availability

Dimensions on stock, see: Delivery program

Mechanical properties

UTS strength: depends on the diameter

Ø 1.00 - 4.40 mm: 700 – 900 MPa Ø > 4.40 mm 650-850 MPa • Hardening capacity: up to 40 HRc

Machining conditions

Machinability: good to very good

build short chips

Cutting speed: fine machining: $V_c \approx 50 - 60 \text{ m/min}$

Lubricant-coolant: Individual choice

 The optimal cutting conditions depend on the machine tool, the cutting tools, the chip dimensions, the lubricant-cooling fluid, as well as the tolerances and surface the roughness to be achieved.

CHRONIFER® Labor 17%

1.4104/AISI ≈430F – Hardenable free machining ferritic stainless steel

Machining conditions CNC-turning

Condition	UTS (MPa)	Depth of cut (mm)	6	3	1
		Feed (mm/r)	0.5	0.4	0.2
Annealed	650-720°C	Cutting speed (m/min)	250	300	380

Machining conditions on automatic lathes Large diameters

Condition	UTS (MPa)	Depth of cut (mm)	6	3	1
		Feed (mm/r)	0.5	0.4	0.2
Annealed	650 – 720	Cutting speed (m/min)	140	155	165
Heat treated QT	750 – 700		125	140	165

Forming

Warm: forging: 1150 – 950°C (pre-heating at 1150 – 1230°C)

Not recommended below 930°C.

The numerous inclusions of manganese sulfides (MnS) may lead to forging cracks.
 Cold: Limited, not recommended.

Welding

Not recommended.

 The numerous manganese sulfides (MnS) inclusions can significantly hamper or even impede the welding process.

Annealing

Soft anneal: $800 - 820^{\circ}$ C, UTS ≤ 730 MPa, $A_5 \ge 15\%$

 Because of the danger of carbide formation the annealing temperature should not exceed 825°C.

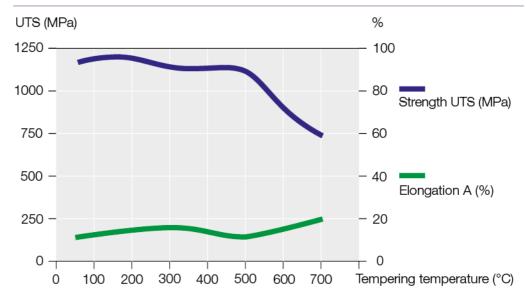
Stress relieving anneal (sub-critical): 650 – 760°C, air cooling

Heat treatments Quenching

Primary quenching: 950 – 1050°C, oil quenching Option: secondary quenching by sub-zero cooling

-20 or down to -80°C/12 - 48h, preferably -80°C/12 - 24h

or by cooling to cryo-temperature


-196°C/12 – 24h: low cooling rate to avoid thermal cracking More info

Tempering

Tempering according to one's need. See diagram

Because of a potential cracking risk the domain 400 – 580°C should be avoided.

Tempering diagram

CHRONIFER® Labor 17%

1.4104/AISI ≈430F – Hardenable free machining ferritic stainless steel

Microstructure

Delivery condition and "annealed + cold drawing" condition: ferrite + carbides

Machining: ferrite + carbides

Quenched and tempered QT: martensite + carbides

- Hard machining: martensite + carbides
- Microstructure for an optimal polishing: stress relieved martensite

Polishing

Optimal: Quenched and tempered < 200°C

This steel grade is not amenable for mirror polish.

• The numerous inclusions of manganese sulfide (MnS) impair the polishing and decrease its material yield as well as the process economy.

Laser marking

- The numerous manganese sulfide (MnS) inclusions impair the laser marking.
- The Heat Affected Zone (HAZ) alters locally the microstructure and may reduce its corrosion resistance. More info

Passivation

The adequacy of the selected passivation process should be checked with respect to the numerous MnS inclusions of this martensitic free machining grade.

 The numerous manganese sulfide (MnS) inclusions may significantly impair the quality of the passivation process. A pickling prior to passivation is highly recommended. It should not be skipped over. More info

Corrosion resistance

Optimum: Clean, quenched, tempered, fine polished, and passivized surfaces.

- The numerous inclusions of manganese sulfide (MnS) of this steel increase its sensitivity to pitting corrosion.
- Conditions to avoid: "annealed" and "annealed + cold deformed". Because of their increased corrosion risk, they are not recommended as use conditions.
- The possible formation of oxides and scaling can strongly decrease the corrosion resistance. These oxidations should always be eliminated either mechanically by an abrasion process, or better, by pickling.

Elementary precautions

- The simplest and easiest precautions is always to keep the parts clean, free of working residues, polished, and correctly dried.
- Use only chlorine free disinfection, cleaning and washing solutions and products.
 More info

Physical properties

Properties	Units	Units Temperature (°C)					
		20	200	300	400	500	
Density	g cm ⁻³	7.70					
Young Modulus E	GPa	215					
Electrical resistance	Ω mm ² m ⁻¹	0.70					
Thermal expansion	m m ⁻¹ K ⁻¹	20-100°C	20-200°C	20-300°C	20-400°C	20-500°C	
	10 ⁻⁶	10.5	10.5	10.5	10.5		
Heat conductivity	W m ⁻¹ K ⁻¹	25				28.7	
Specific heat	J kg ⁻¹ K ⁻¹	460					
Melting range	1510 – 1425 °C						
Magnetism us	Ferromagnetic, can be magnetized. More info						

Disclaimer: The information and data of this informative "Data sheet" are indicative only. They are not use instructions. The users must define and endorse them in each case.