

PY/ES/

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

CHRONIFER[®] M-4122

1.4122/EN X39CrMo17-1 - Martensitic Stainless Steel

Table 1	Machinii	ng 1.4122 – annealed 700-850 MPa	a						
Indicative machining		speed (m/min)	100						
conditions	Chip thickness (mm)		4 - 6	2-3	0.5 – 1				
	Feed (m	m/Rev)	0.4 – 0.6	0.3 – 0.4	0.15 – 0.2				
Forming	 Warm: Forging: 950-1180°C, slow furnace cooling Slow heating up to 800°C, then fast up to the forming temperature of preferably 1150-1180°C Cold: difficult, feasible after annealing at 750 – 820°C/slow cooling 								
Annealing	 Soft annealing: (720 – 850°C) 750-820°C/ low furnace cooling UTS/Rm after annealing: ≤ 900 MPa Intermediate anneal during cold working: < 740°C/slow furnace cooling to 550°C or air cooling Stress relieving: 600-650°C/slow furnace cooling 								
Quenching Subzero and Deep temperature treatment	 Quenching: Primary quenching (980 – 1060°C) 1000-1040°C / oil or fat air or gas cooling/quenching Secondary quenching – Subzero cooling/quenching from -20 to -80°C °C/12-24h, preferably 12h. Deep cooling (Cryo)-treatment: from -80 to -196°C/6-12h, progressive or step by step cooling to prevent any poten- tial thermal shock cracking. Secondary quenching and Subzero or Deep temperature treatments should always be made as soon as feasible after the primary quenching. Secondary quenching and Subzero or Deep temperature treatments even out the 								
Tempering	 internal stresses and may cause a supplementary hardening. <u>More information</u> Tempering according to needs, see Figure 1, Tempering diagram The temperature range of 400 – 600°C should be avoided because it may lead to brittleness and reduction of the corrosion resistance. 								
Welding		not recommended							
Figure 1 Tempering diagram Quenching: 1030°C/oil Product: ø 25 mm	HRC 55 - 50 - 45 - 40 - 35 - 30 - 0		600 700	tempering tem	perature (C°)				

L. Klein AG • Längfeldweg 110 • CH-2504 Biel/Bienne Telefon 0041 (0)32 341 73 73 • Telefax 0041 (0)32 341 97 20 • www.kleinmetals.swiss • info@kleinmetals.swiss 2/3

CHRONIFER® M-4122

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

1.4122/EN X39CrMo17-1 - Martensitic Stainless Steel

Microstructures	Microstructure for machining: Ferrite + carbides Microstructure for hard machining: Martensite(possibly tempered Martensite) + carb Hardened condition (QT condition): Martensite + carbides Microstructure for hard machining: <200°C tempered Martensite + carbides Optimal microstructure for polishing: Tempered Martensite + carbides					
Polishing	 Very well adapted for mirror polishing Optimal in QT condition, tempering < 200°C 					
Laser marking	 Under normal laser marking conditions the Heat Affected Zone (HAZ) should not b modified and induces alteration of the strength and corrosion resistance should tak place. <u>More information</u> 					
Pickling and Passivation	 It is strongly recommended to select adequate pickling and passivation procedures, and products, adapted to the treatment of martensitic stainless steels. In order to avoid any "flash back" phenomena, it is strongly recommended to always pickle the surface prior to its passivation. <u>More information</u> 					
Corrosion resistance	Optimal: Clean surface in the heat treated condition, fine polished and passivized					
Superficial oxidation	 The formation of a colored oxidation or scaling on the surface during heat treatment can significantly reduce the corrosion resistance. These oxidations or scales must always be eliminated, is it mechanically, or chemically by pickling. <u>More information</u> 					
Elementary precautions	 The simplest and elementary precautions is to always keep the parts clean, free of working residues, polished, and correctly dried. Use only chlorine free disinfection, cleaning and washing solutions and products. <u>More information</u> 					

Physical properties	Property	Unit	Temperature (°C)				
			20	200	300	400	500
	Density	g cm ⁻³	7.7				
	Young Modulus E	GPa	215	205		190	
	Electrical resistance	Ω mm ² m ⁻¹	0.80				
	Thermal expansion	m m ⁻¹ K ⁻¹	20–100°C	20–200°C	20–300°C	20-400°C	20–500°C
		10 ⁻⁶	10.4	10.8	11.2	11.6	
	Thermal conductivity	W m ⁻¹ K ⁻¹	15-30				
	Specific heat	J kg ⁻¹ K ⁻¹	430	505	530	550	580
	Relative magnetic						
	permeability µr		≥400				
	Magnetism	Ferromagnetic, can be magnetized More information					

Disclaimer: The information and data of this informative "Data sheet" are indicative only. They are not use instructions. The users must define and endorse them in each case.