

CHRONIFER® Special D 18/8

F '4E 5

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

1.4305/AISI 303 – Free machining 18/8 austenitic stainless steel

Features and particularities This steel belongs to the free machining austenitic stainless steels group. It contains 0.15-0.35% S and up to 1% Cu. It is the reference free machining austenitic stainless steel. But its high S-content reduces markedly its aptitude to welding, high quality polishing and corrosion resistance. Its high Cu-content can render it sensitive to stress corrosion cracking, and its high C-content to intergranular corrosion, after exposure in the critical sensitization range 450-850°C. It can retain traces of ∂ (Delta) ferrite in all conditions and therefore displays traces of ferromagnetism. Plastic cold deformation lead to the formation of α (Alpha) martensite and increases considerably its ferromagnetism up to relative magnetic permeability >1.

Uses This steel is the classical free machining austenitic stainless steel. Its uses are numerous, from sanitary wares to beverage, food and chemical industries as well as components in micro-mechanical engineering and equipment.

Standards	Material Number ISO EN 10088-3 UNS DIN AFNOR AISI/SAE ASTM JIS			1.4305 7153-1 (N) X8CrNiS 18-9 S30300 X8CrNiS 18-9 303 F 899 A 582 SUS 303								
Chemical composition (‱r.)	C max. 0.10	Si max. 1.00	Mn max. 2.00	P max. 0.045	S 0.15 0.35	Cr 17.0 19.0	Ni 8.00 10.00	Mo ≤ 0.70	Cu max. 1.00	N max. 0.10	Fe balance	
Dimensions and tolerances	Standard: bars 3 m (+50/0 mm), coils for EscomaticMechanical properties:Rm 650-950 MPa• Bars $\emptyset < 0.8-18$ mm:ISO h8• Bars $\emptyset \ge 2.00$ mm:ISO h6 (h7)• Wires $\emptyset \ge 0.80 - 3.00$ mm:ISO fg7, coils for Escomatic• Out of roundness max:½ diameter tolerance• Other tolerances on request $120 + $											
Executions and Delivery conditions	Standard: bars 3 m (+50/0 mm), • Bars $\emptyset \ge 2.00$ mm: • Bars < 2.00 mm: • Wires $\emptyset < 3.00$ mm: Other executions on request), coils f cold Ends surfa surfa	, coils for Escomatic cold drawn, ground, polished, Ra max 0.4 μm (N5) Ends: pointed and chamfered surface condition: cold drawn surface condition: cold drawn, coils for Escomatic						
Availability	Standards dimension on stock, see: Sale program											
Cutting conditions	Machinability: Cutting speed:				very V _c ≈ Well	very good, reference $V_c \approx 40 - 100 \text{ m/min.}$ Well adapted to high cutting speeds						
	 The optimal cutting conditions depend on the machine tool, the cutting tools, the chip dimensions, the lubricant-cooling fluid, as well as the tolerances and surface the roughness to be achieved. 											

E STALLE U ACIERS EDELSTÄHLE U FINE STEEL AND A	FINS ET MÉTAUX NO METALLE TETALS
	CHRONIFER® Special D 18/8
	1.4305/AISI 303 – Free machining 18/8 austenitic stainless steel
Grain size	According to ASTM E47:• Hot rolled bars:ASTM Nr. ≥ 6-7, individual grains > 5• Cold drawn wires:ASTM Nr. ≥ 7-8
δ (Delta) Ferrite	The CHRONIFER® Special D 18/8 steel contains ∂ (Delta) Ferrite. Its Ferrite content can be determined graphically with the Schaeffler-De Long Diagram modified by Outokumpu, or computed with the aid of the Cr _{eq} und Ni _{eq} equivalent contents: • Cr _{eq} = 1.5Si + Cr + Mo + 2Ti + 0.5Nb • Ni _{eq} = 30(C + N) + 0.5Mn + Ni + 0.5(Cu + Co) • Ferrite Number FN or $%_{vol.} \delta$ (Delta) Ferrite FN = ([{1.375 (Cr _{ew} - 16} + 10] - Ne _{ii}) 2.586 Negative values of FN indicate the absence of δ (Delta) Ferrite.
Forming	 Warm, forging 950 – 1100°C, quenching/rapid cooling The numerous MnS inclusions increase the hot cracking risk and restrict the hot forming capability. In case that the temperature should drop below 900°C, the risk of sensitization increases strongly, see Figure p. 3. In this case, a solution anneal is recommended. Cold: feasible, see Figure 1 p. 3.
Solution anneal	 1030-1060°C, quenching/rapid cooling To restrict the risk of a rapid and intensive grain growth, a minimum cold deformation of 10 – 15% is recommended. Temperature below 900°C should be avoided as they may lead to sensitization and to the precipitation of intergranular carbides. In this case, a 1030-1060°C solution anneal is recommended.
Stress relieving	 Stress relieving treatments above 150°C may lead to a drop of the mechanical properties obtained by cold deformation.
Hardening Strengthening	 This steel cannot be hardened by heat treatment. This steel can be strengthened by cold deformation.
Microstructures	Delivery condition, hot worked: Austenite in the annealed condition For machining and polishing: Cold deformed bars and wires: Austenite in the annealed and cold worked condition
Polishing	 The presence of numerous MnS inclusions as well as of ∂ (Delta) Ferrite, may reduce significantly the steel aptitude to polishing. Electro-polishing: adapted, with restriction The traces of ∂ (Delta) Ferrite present in this steel are etched in relief by electro-polishing. The presence of intergranular carbides after a sensitization below 850°C, requires a 1030-1060°C solution anneal treatment in order to not jeopardize the polishing abilities and corrosion resistance of this steel. The intergranular carbides precipitated during a sensitization exposure appears in relief after electro-polishing.
Welding	• Not recommended. The presence of numerous MnS inclusions in this steel restrict its welding.

CHRONIFER® Special D 18/8

N K E Z |

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

1.4305/AISI 303 - Free machining 18/8 austenitic stainless steel

M/455

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

CHRONIFER® Special D 18/8

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

1.4305/AISI 303 - Free machining 18/8 austenitic stainless steel

Physical properties	Properties	Unité		Ten	(°C)		
			20	200	300	400	500
	Density	g cm ⁻³	7.90				
	Young modulus E	GPa	200	186	179	172	
	Shear modulus G*	GPa	80				
	Poisson coefficient V		0.24	0.256			
	Electrical resistance	Ω .mm ² .m ⁻¹	0.75				
	Thermal expansion	m m ⁻¹ K ⁻¹	20–100°C	20–200°C	20–300°C	20-400°C	20–500°C
		10 ⁻⁶	16	16.5	17	17.5	18
	Thermal conductivity	W.m ⁻¹ .K ⁻¹	15	16.3		15.2	
	Specific heat	J.kg ⁻¹ .K ⁻¹	500	510			
	Liquidus	°C		1410			
	Magnetism	Annealed condition: Traces of ferromagnetic ∂ (Delta) Ferrite					
		Cold worked condition: Traces of ferromagnetic ∂ (Delta) Ferrite					Ferrite
		and α (Alph	ha) martensite				

Disclaimer: The information and data of this informative "Data sheet" are indicative only. They are not use instructions. The users must define and endorse them in each case.