

NICKEL SILVER NM2

Free machining nickel silver alloy with Pb addition

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

Particularities	This free machining nickel silver NM2 alloy contains 2.4-3.0% Pb. It has an excellent machinability. It can easily be warm extruded to produce shaped bars or warm form forged. However, its cold forming ability is somewhat restricted. High strengths can be reproducibly achieved. It has a gray silver color with a yellow touch.								
Uses	Numerous applications such as: ball pen points, eye glass industry, watch industry, lock pins, mode accessories, etc.								
Standards	Material number EN DIN UNS ASTM NF SNV		CW400J CuNi7Zn39 CuNi7Zn39 no number no standaro no standaro no standaro	CW400J CuNi7Zn39Pb3Mn2 CuNi7Zn39Mn5Pb3 (former DIN 2.0771) no number no standard no standard no standard					
Chemical composition (‰ _{wt})	Cu Ni 48.5 6.9 49.7 7.6	Pb 2.4 3.0	Mn Zn 2.1 bal 2.8	ance					
Dimensions and Tolerances	• Wires for Escomatic machines $\emptyset \le 3h9 \text{ mm}$ • Round cold drawn wires $\emptyset \le 5h9 \text{ mm}$ • Round cold drawn, ground wires $\emptyset \le 5h6 \text{ mm}$ Other tolerances on request								
Executions and delivery conditions	 Round straightened bars Bar ends Straightness Wires for Escomatic machines Other executions on request 			Length pointea 0.5 mr Rings	Length 3 m +50/0 pointed and chamfered 0.5 mm/m Rings				
Availability	Standard dimensions on stock, see <u>Sale program</u>								
Mechanical properties	Wires and ba Designation soft ½ hard hard	ars 0.5 - Con anne 20% 40%	- 5 mm dition ealed cold reductio cold reductio	UTS/Rm (MPa) 490 on 600 on 780	R _{0.2%} (MPa) 240 500 700	A (%) 38 12 3	Hv hardness DPHN 110 175 225		
Cutting conditions	Machinability Tool life: Short, needle Cutting sp Cooling lu This alloy condition t The optimal cutt (cutting depth a roughness to be	v index: elike chi eed: bricatior can still han in t ing condit nd feed), t produced	ps: h fluid, i.e.: be more effic he soft one (L ions depend on t he cutting speed	95 (Cu 90 (Cu 95 (Cu $V_c \approx 60$ INOX of itently mach JTS/Rm = 4 the machine to the machine to	IZn39Pb3 =10 IZn39Pb3 =10 IZN39	0) 0) 5X hard (UTS ols, the chip d well as the tol	/Rm = 600 MPa) imensions erances and surface		

NICKEL SILVER NM2

Free machining nickel silver alloy with Pb addition

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

Microstructure	 The Pb addition amoun where it is present as fin The Pb addition improv The Pb addition enhance 	ts to approximately 1.5%vol. It is not miscible into this alloy, ne particles evenly distributed into the microstructure. es massively its machinability. ces a fine grain recrystallization.
Forming	Warm: Cold: ● Cold reduction before a	700 – 800 °C, can easily be formed cannot be easily formed nnealing is limited to approximately 40% reduction.
Welding	Gas-shielded welding: Resistance welding: • The Pb addition may re • Under given circumstan local Zn depletion can a	moderately appropriate well appropriate nder welding more difficult. ices, welding may lead to a Zn loss by evaporation. This affect the corrosion resistance.
Brazing & Soldering	 The Pb addition may re Hard soldering, brazing: Soft soldering: 	nder brazing & soldering more difficult. very well adapted less adapted
Glueing	Very well adapted	
Heat treatments	 Soft anneal, recristallization Thermal stress relieving: A thermal stress relieving mechanical properties. 	on: 600 – 700°C/1-3h 300 – 400°C/1-3h ng heat treatment may reduce or (negatively) influence the
Polishing	Mechanical: Chemical: Electrolytic:	well adapted moderately adapted less adapted
Laser marking	Relatively difficultThe Pb addition can ma precautions might be needed.	ake the laser marking somewhat more difficult. Appropriate ecessary.
Surface treatments	Electroplating:	well adapted
Corrosion resistance	This free machining nickel brass, such as Klein's Bra	silver NM2 alloy has a better corrosion resistance than ss 58A (CuZn39Pb3).
Stress corrosion cracking	This free machining nickel sion cracking.	silver NM2 alloy is less sensitive and prone to stress corro-

NICKEL SILVER NM2

Free machining nickel silver alloy with Pb addition

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

Corrosion resistance	Atmospheres and	Resistant	Medium	Passable	Insufficient
	Industrial atmospheres	•			
	Agrar atmospheres	•			
	Marine atmosphere	•			
	Fresh water	•			
	Sea water	•	•		
	High humidity and temperature		•		
	Vinegar			•	
	Humid atmospheres				•
	containing chlorides				

Galvanic corrosion • Copper based alloys have a high standard corrosion potential. For this reason there exist a risk of galvanic corrosion in contact with other metals having a smaller potential not forming a protective passive oxide layer (passivation layer), such as for example non stainless steels containing less than 13%Cr.

Physical properties	Properties	Unit	Temperature (°C)					
			20	200	300	400		
	Density	g cm ⁻³	8.40					
	Elastic Young modulus E	GPa	115					
	Electrical resistance	Ω mm ² m ⁻¹						
	Electrical conductivity	MS/m	4					
	Electrical conductivity	%IACS	7					
	Thermal expansion	m m ⁻¹ K ⁻¹	20–100°C	20–200°C	20-300°C	20-400°C		
			19		19.5			
	Thermal conductivity	W m ⁻¹ K ⁻¹	20°C					
			33					
	Specific heat	J kg ⁻¹ K ⁻¹	20°C		100 - 300°C			
			420	0.398				
	Magnetism	non magnet	non magnetic					
	Melting range	910-925°C						

Disclaimer: The information and data of this informative "Data sheet" are indicative only. They are not use instructions. The users must define and endorse them in each case.