CDPPER BERYLLIUM [M25]

Free machining Cu-Be alloy with addition of Pb

Main technical properties and features

The Alloy M25, CuBe2Pb, offers the strength properties of Alloy 25, CuBe2, with the added benefit of being "free machining". It achieves the highest strength and hardness available among all copper alloys after age hardening, and is consequently very widely used. Delivered in the form of rod and wire, M25 is mainly used for screw machined parts. A small addition of lead [0.2 to 0.6%] greatly improves machinability by reducing chip length and increasing tool life. Best machinability is obtained in the cold worked temper [H or TV 04], which is the most commonly used temper. M25 is generally hardened after machining. It can be locally annealed to allow crimping after ageing and is easily plated. The M25 alloy is characterized by its high fatigue strength, its excellent thermal stress relaxation and by a unique combination of mechanical resistance and conductivity.

Typical uses Thanks to its unique combination of high strength, electrical conductivity and low thermal stress relaxation, the alloy M25 is very frequently used for manufacturing machined male or female contacts in the electronics, aircraft and automotive industries. Another typical application is the production of turned parts for the watch industry.

Normes		Material number CuBe2Pb EN EN 12164-12166 DIN 2.1248 UNS [ASTM] C17300			
	Cu*	Be	$\mathrm{Co}+\mathrm{Ni}$	$\mathrm{Co}+\mathrm{Ni}+\mathrm{Fe}$	Pb
	balance	1.80-2.00	≤ 0.20	≤ 0.60	0.20-0.60

Values [Weight \%]. In order to achieve maximum homogeneity and consistent quality, the actual manufacturing tolerances are tighter and more precisely than the composition indicated. *Copper plus additions > 99.5\%

Mechanical properties of rods

Rods	Temper	Heat Treatment	$\mathbf{R p}_{0.2}$ $[\mathrm{~N} / \mathrm{mm} 2]$	$\mathbf{R}_{\mathbf{m}}$ $[\mathrm{N} / \mathrm{mm} 2]$	$\mathbf{A}_{50 \mathrm{~mm}}$ $[\%]$	Hardness HV
TD04 R620	hard			$510-815$	$620-900$	8 min

After age hardening [by the customer]

Rods	Temper	Heat Treatment	$\mathbf{R p}_{0.2}$ $[N / m m 2]$	\mathbf{R}_{m} $[N / m m 2]$	$\mathbf{A}_{50 \mathrm{~mm}}$ $[\%]$	Hardness HV
TH04 R1300	hard + hardened	$2 h$ à $325^{\circ} \mathrm{C}$	$1100-1380$	$1280-1550$	2 min	380 ± 20

LKKL EIN SA
PREMIUM STEEL \& METALS

CDPPER BERYLLIUM [M25]

Free machining Cu-Be alloy with addition of Pb

Physical properties	Properties	Unit	
	Modulus of elasticity	$\mathrm{kN} / \mathrm{mm}^{2}$	125, 131 [1]
	Poisson ratio		0.285
	Density	$\mathrm{g} / \mathrm{cm}^{3}$	8.25, 8.36 [1]
	Melting point / Melting range	${ }^{\circ} \mathrm{C}$	875-985
	Linear dilatation coefficient	$10^{-6} /{ }^{\circ} \mathrm{C}$	17 de 20 à $200{ }^{\circ} \mathrm{C}$
	Thermal conductivity at $20^{\circ} \mathrm{C}$	$\mathrm{W} / \mathrm{m}{ }^{\circ} \mathrm{K}$	110
	Electrical resistivity	$\mu \Omega \mathrm{cm}$	11-9, 8-6[1]
	Electrical conductivity	MS/m	9-11, 13-16 [1]
	Electrical conductivity	\% IACS	15-19, $22-28$ [1]
	Magnetic properties	Nonmagnetic [Slightly diamagnetic]	
	Permeability	$\mu=1.0006$	

[1] Values before and after hardening, respectively.

Dimensional tolerances [rod and wire]		Standard tolerances			Specific tolerances
	Diameter	$\leq 3.0 \mathrm{~mm}$	h6	$+0 /-6 \mu \mathrm{~m}$	Upon request, the rods can be delivered with tighter tolerances [h5 for ex.] by means of additional drawing and/or grinding processes.
		> 3.0 et $\leq 6.0 \mathrm{~mm}$	h6	+ $0 /-8 \mu \mathrm{~m}$	
		> 10.00 et $\leq 18.0 \mathrm{~mm}$	h6	+ $0 /-11 \mu \mathrm{~m}$	
		>18.0 et $\leq 30.0 \mathrm{~mm}$	h6	+ $0 /-13 \mu \mathrm{~m}$	
	Qut-of-roundness	Maximum equals half of the tolerance value of the diameter. Upon request rod and wire can be ordered with tighter out-of-roundness tolerances.			
	Length	The standard length of rods is 3 meters $\pm 30 \mathrm{~cm}$.			
	Chamfer	Standard rods with diameters larger than 2 mm are delivered pointed and chamfered.			
	Straightness	Straightness of the delivered rods complies with the EN 12164 standard.			

