LESTINALE UN ACTERIS	and the second second second second							TERMENANCE TERMENANCE
TITAN Grade 4								
	3.7065 - EN Ti 4 / ASTM B348 and F 67 - CP Titan Grade 4 For the medicine, micro-engineering, watch making etc.							
Features and Peculiarities	Titan Grade 4 is a high quality and strength CP titanium VAR (Vacuum Arc Melted and remelted CP titanium. Its contents in C, O, N and H are closely controlled. The Fe content is limited in harmony with the O content to permit a satisfactory cold forming and deformation to high strength levels without impairing the final ductility. Its corrosion resistance in chloride containing mediums is excellent. Titan Grade 4 is totally biocompatible and non-allergenic. It exhibits a good oxidation resistance. Anodic oxidation permits to achieve a large spectrum of interference color of the surface. That also improves the fretting wear resistance.							
Uses	Titan Grade 4 is well indicated as implant material and as material for applications in the medical, surgical and dental fields as well as in micromechanical engineering and in the watch making industry for components for movements and the watch exterior. It has an excellent corrosion resistance in seawater and marine environments. Its high corrosion resistance in chlorine containing mediums indicates it for applications in the chemical industry. This titanium grade can easily be oxidized anodically offering a broad spectrum of interference colors that reduce the fretting wear resistance.							
Standards	Material EN & DI ISO AFNOR ASTM UNS		3.7065 Ti 4 5832-2 T 60 B 348, F 67 R 50700					
Chemical composition (‱t.)	C max. 0.08	Fe max. 0.50	O max. 0.40	N max. 0.05	H max. 0.0125	Ti balance		
Dimensions and Executions	Bars: Other e>	cecutions	Toleran ø > 1.0 Straight SWISS	ce: ISO h mm: poin tness: ma LINE: ø > g proof te 0 mm: 0 mm:	6 (h7), Oth ted and ch x. 0.4 mm/	ner toleran namfered /m; Rm > 8	d, rugosity: Ra aces on reques 800 MPa: max Tab. 1	st
Availability	Dimensions courantes en stock, see: Delivery program							
Mechanical Properties	According to ISO and/or ASTM: UTS/Rm $680 - 800 \text{ MPa}$ $\emptyset 5 - 12 \text{ mm}$: $800 - 900 \text{ MPa}$ YS0.2/Rp _{0.2} : 620 MPa 620 MPa Elongation A: $\emptyset < 9.0 \text{ mm}$: $\geq 12\%$ $\geq 10\%$						Pa	
Machining	 The o chip o 	nt-coolan ptimal cu limensior	utting cond	0.10-0.1 individu litions dep ricant-coo		e machine	tool, the cutti the tolerance	

3.7065 - EN Ti 4 / ASTM B348 and F 67 - CP Titan Grade 4 For the medicine, micro-engineering, watch making etc.

Grain size	ASTM E112 Number: ≥5
Cold working capability	 Cold: Rm ≤ 930 - 1135* MPa Rp_{0.2}: ≤ 655 - 825* MPa *Indicative values only UTS/Rm and YS_{0.2}/Rp_{0.2} are function of the amount and type of cold working. High strengths are achievable by cold working up to 95% total reduction. It can be achieved by repeated cold deformations up to approximately 35-40% followed by F00.5 40% (followed by F00.5 40%)
	500-540°C/1h stress relieving anneals.
Anneal temperature	• 600°C/0.5-1h
Stress relieving	 ≤ 500°C/1h on finished or intermediate products Stress relieving treatment can also be applied between the rough and fine or finishing machining operations. This to reduce or eliminate the possible internal stresses build in during heavy or rough machining that may lead to distortions.
Final stabilization anneal	● 420-440°C/1h
Comparison of the composition of the CP titanium grades	The choice of the adequate Grade of CP titanium is essentially a decision based on the composition and the mechanical properties. The Figures 1 and 2 show this aspect of the best choice of CP titanium Grade for the aimed use.
Figure 1 Composition of the tita- nium CP Grades	Content (%ppm) 4500 4000 3500 2500 2500 2500 - 500 - - - - - - - - - - - - -

O, Fe et C are the three elements which could be regarded as alloying element per se and the elements allowing the control of the achievable mechanical properties. The others chemical element of the composition are controlled impurities.

Negative role of hydrogen

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

Hydrogen diffuses easily and readily in titanium and titanium alloys. It renders them brittle. The pick up and presence of hydrogen must be avoided by any means. The sources of the H contamination are the protective atmospheres, and the chemical and electrochemical reactions producing hydrogen.

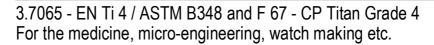


Figure 2 Achievable mechanical properties of the Titanium 1-4 grades

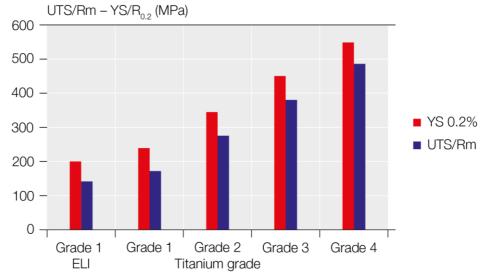
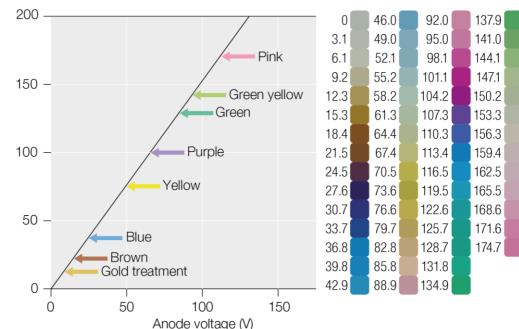


Figure 2 shows the indicative mechanical properties in the annealed condition that can be obtained with the Titanium CP Grade.

Pickling	 Titan Grade 4 can be pickled with a solution of: 10 parts of HCl Hydrochloric acid and 1 part of HF Fluor hydric acid. The proper setting of the dissolution allows controlling the intensity of the pickling with the surface condition to obtain or satisfy. Pickling permits to obtain chemically clean surfaces not retaining residual contaminations due to the processing.
Passivation	 Titanium reacts spontaneously in the presence of oxygen to form a protective passive oxide layer. The thickness of this layer is in the low nanometer range. It provides and warrants the excellent corrosion resistance and biocompatibility of Titan Grade 4. Electro polishing of Titan Grade 4 permits to reinforce the passive oxide layer. But its main role is to clean the surface of any residual contaminations that cannot be as efficiently removed by pickling only.
Corrosion resistance	Titan Grade 4 as an excellent corrosion resistance, the second best of all titanium and titanium alloys after Titan Grade 2, the best benchmark reference to be matched or to be compared to by all materials for medical applications.
Biocompatibility	The biocompatibility of Titan Grade 4 in the human body is excellent, but the second best after Titan Grade 2. It is not allergenic and is the second benchmark, or reference to match, or to be compared to by all materials for medical applications, notably implants.


Oxide film thickness (nm), 1 nm = 10 Å

3.7065 - EN Ti 4 / ASTM B348 and F 67 - CP Titan Grade 4 For the medicine, micro-engineering, watch making etc.

Figure 3 Anodic oxidation

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

Table 1 Relation between the observed color and the thickness of the oxide layer

Titan grade 4 can easily be anodic oxidized in oxidant acid baths, such the phosphoric acid (H_3PO_4) or sulfuric acid (H_2SO_4). As shown by Figure 3, a large spectrum of interference colors can be produced in function of the concentration of the selected oxidant acid, i.e. 4M H3PO4, the temperature and the applied voltage. No additive or coloration pigment is necessary. The colors observed are pure interference colors.

Color spectrum The interference colors arise by the reflexion and refraction of the incident visible light on the surface of the metal. As shown in Table 1, anodic oxidation can produce a large spectrum of colors.

Reinforced Biocompatibility Biocompatibility Biocompatibility I to spontaneously passivize in the presence of oxygen to form a TiO₂ oxide layer. This layer as shown in Table 1 is very thin < 2-3 nm. Thicker layers as produced by anodic oxidation, reinforce the biocompatibility and corrosion resistance.

Corrosion resistanceThe corrosion resistance of titanium Grade 4 is excellent. It can still be reinforced by
the formation of a thicker TiO2 oxide layer produced by an anodic oxidation.Resistance to frettingThe thicker TiO2 oxide layers produced by anodic oxidation improve the gliding prop-
erties. These oxide layers can be exploited to improve the gliding properties, the wear
and fretting resistances. These improvements can be exploited to enhance the gliding

Exploitation of the
color spectrumThe large color spectrum produced by the anodic oxidation can be used for the benefit
of the jewelry industry (Table shows 58 various distinct colors), and for fast recognition
or identification, as for example in the medical field.

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

3.7065 - EN Ti 4 / ASTM B348 and F 67 - CP Titan Grade 4 For the medicine, micro-engineering, watch making etc.

Physical properties	Properties	Unit	Temperature (°C)					
			20	200	300	400	500	
	Density	g cm ⁻³	4.51					
	Young modulus E	GPa	105-110	92	85	78	72	
	Modulus of compression	GPa	110					
	Shear modulus	GPa	45					
	Poisson coefficient	-	0.31-0.37					
	Thermal Conductivity	W.m ⁻¹ .K ⁻¹	17	15	15	15	15	
	Electrical resistance	$\Omega.mm^2.m^{-1}$	0.55	0.58	0.595	0.605	0.615	
	Thermal expansion	W.m ⁻¹ .K ⁻¹	20–100°C	20–200°C	20–300°C	20–400°C	20–500°C	
		10 ⁻⁶	8.6	8.9	9.5	9.6	9.7	
	Magnetic susceptibility	10 ⁻⁶	3.4	3.5	3.6	3.9	4.0	
	Specific heat	J.g ⁻¹ .K ⁻¹	0.523					
	Emissivity (1-10)	-	0.3					
	visible ligth							
	Reflexion coefficient	-	0.56					
	Melting range	°C	1665-1677					
	Allotropic α/ß transus	°C	913					
	α structure cubiqc centered	°C	≥913					
	ß structure hexagonal	°C	≤913					
	Magnetic relative							
	permeability µr at	955 H.m ⁻¹	1.0	0005-1.00	01			

Disclaimer: The information and data of this informative "Data sheet" are indicative only. They are not use instructions. The users must define and endorse them in each case.