LE LA LE LA LA LE LA	STATE							
	NIVAFLEX 45/18							
	High strength corrosion resistant Co-Ni-Cr-based alloy							
Features and Peculiarities	The Co- based NIVAFLEX 45/18 alloy is melted in vacuum. This alloy is clean. It al- lows to reach by cold working and aging very high mechanical strengths and conserv- ing its very good corrosion resistance, especially in salt containing mediums. This alloy is paramagnetic but is not implantable. Its high fatigue resistance indicates it for numerous aeronautic and space applications, and in the medical field as well. Fur- thermore its elastic properties designate it for high characteristics springs, microme- chanical devices and watch movements and exteriors As wires it is of use as deep- sea, marine, and drilling lines in the gas and oil industries.							
Use	The NIVAFLEX 45/18 alloy is the material of choice when high toughness, ductility, fatigue resistance, corrosion and wear resistances are required such as in the chemical industries, marine and seawater, micromechanical, watch making, aerospace etc.							
Standards	Material number2.4782AFNORAMSISOUNS							
Chemical composition (‰vt)	C Si Mn P S Cr Mo Ni Co W Fe max. max. 1.50 max. max. 18.00 4.00 21.00 45.00 4.00 balance 0.15 1.20 2.50 0.015 0.015 - -							
Executions Dimensions Delivery condition	 Round bars: 0.2-10 mm, cold drawn, straightened 3 m (2 m), ground h6 Rm and A% see Figure 2 Round wires: cold drawn, rings for Escomatic Rm < 1100 MPa, A% function of the amount of cold work Cold drawn surface « skin pass » 							
Tolerance	Standard: ISO h8-h6							
Availability	Standard dimensions on stock, see: Delivery program							
Machining Machine-tools	 The NIVAFLEX 45/18 alloy is tougher than the toughest stainless steels. Then its machining requires most rigid machine tools, tools holders and cutting tools. The use of high vibration damping tool-holders is highly recommended. 							
Mechanical strength	 The NIVAFLEX 45/18 alloy is relatively difficult to machine. The machining of the NIVAFLEX 45/18 alloy in the soft condition is not recommended. Because of its strong tendency to seize and its galling properties. The UTS/Rm "optimal window" for classic machining is of ≈1200-1400 MPa, and broadened, of 1050-1600 MPa. 							
Machining	 Machinability: difficult Cutting speed: slow, Vc ≈ 20-40 m/min Feed: moderate to strong Lubricant-coolant: individual choice The optimal cutting conditions depend on the machine tool, the cutting tools, the chip dimensions, the lubricant-cooling fluid, as well as the tolerances and surface the roughness to be achieved. 							

Modifications will not be adjusted automatically. Last update 10/2018

NIVAFLEX 45/18

High strength corrosion resistant Co-Ni-Cr-based alloy

• The NIVAFLEX 45/18 alloy can be strengthened by cold working. The cold deformation results in anchoring the deformation dislocations and twins. Ti and C are both in solid solution in the annealed condition. Conjointly, they contribute to the hardening synergy responsible of the deformation hardening or strengthening.

The yield strength YS_{0.2}/R_{0.2} of the NIVAFLEX 45/18 alloy is in all metallurgical conditions ≥ 80% UTS/Rm.

Modifications will not be adjusted automatically. Last update 10/2018

Figure 2 Rm/UTS & YS_{0.2}/R_{0.2} vs Cold strengthening Aging

N / E = |

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

Corrosion: +++ <10² μ m/y, ++ <10³ μ m/an, + <3.10³ μ m/y

NIVAFLEX 45/18

EDELSTÄHLE UND METALLE FINE STEEL AND METALS

High strength corrosion resistant Co-Ni-Cr-based alloy

Passivation	 The NIVAFLEX 45/18 alloy can be passivized. Passivation treatment: nitric acid 40% / room temperature 								
Austenite expansion	 The surface hardness applying a kolsterizing This additional surface word and aging. Final reached The surfaces after an is due to the enrichme 	of the NIVA treatment, hardening surface hard austenite ex nt of the cor	FLEX 45/1 or an auste is additive dnesses of cpansion w nduction ba	8 alloy ca enite expa to the cun 800-1000 ith C are n and with fr	n be furthe nsion with nulated ha Hv, or up nilky-gray. ee electroi	er improve C at ≈400 rdenings c to 70 HRc This phen ns.	d by an °C. of cold c can be oomenon		
Tribological properties	 The fretting / galling resistance improves with the cold deformation grade. The kolsterizing treatment, or the austenite expansion with C enrichment of the surface, forms an anti-galling like surface. 								
Biocompatibility	• The NIVAFLEX 45/18	alloy is not	a registere	d biocomp	atible allo	у.			
Magnetism	The NIVAELEX 45/18	allov is para	magnetic						
magnotion			anagnotio.						
Temperature range	 The highest relative mapermits the displacemable magnetic fields of aging spools. Continuous exposure: 	de -269°C	of component of component of component of component of component of the co	nents in th neration of um) to may	45/18 alloy is alloy in t the magn 400°C.	the highes etic resona	t achiev- ance im-		
of use	Short exposure: up to	max 500°C							
Physical properties	Properties	rties Unit		Temperature (°C)					
			20	200	300	400	500		
	Density	g cm ⁻³	8.5						
	Young modulus E	GPa	220						
	Shear modulus G	GPa	90						
	Poisson coefficient	-	0.34						
	Thermal conductivity	W.m ⁻ '.K ⁻ '	12.5						
	Electrical resistance	$\mu\Omega.cm$	1.0	00.00080	00.00000	00 50000	00.04580		
	Coefficient of thermal	m/m '.K '	20-100°C	20-200°C	20-300°C	20-500°C	20-815°C		
	expansion Specific heat	10°	12.5						
	Magnetic permeability	J.KY '.К '	400						
	$5 10^2 \cdot 10^3 \Omega_{\text{e}}$ appealed	ur	~1 002						
	5.10^{-10} Oe, annealed	μι ur	<1.002						
		M	1.000						

Disclaimer: The information and data of this informative "Data sheet" are indicative only. They are not use instructions. The users must define and endorse them in each case.