

1.4404/AISI 316L – Acier inoxydable austénitique à bas S

Caractéristiques et particularités

Cet acier est un acier inoxydable austénitique du type 1.4404 (316L) à bas S de max. 0.015%. Sa faible teneur en C de max. 0.030% réduit considérablement le risque de sa sensibilisation en-dessous de 650°C environ. Lui assurant ainsi une bonne résistance à la corrosion inter-cristalline, un comportement satisfaisant au soudage et son aptitude favorable à tous les modes de polissage. Sa résistance à la corrosion est bonne, notamment en milieux acides non-oxydants ou contenant des halogènes. Cet acier peut être utilisé au continu jusqu'à 430°C. Son usinabilité est satisfaisante, bien que meilleure à l'état écroui. Cet acier ne peut être durci que par écrouissage. Son aptitude au travail à froid est similaire à celle de l'acier CHRONIFER® Special 35. Il peut présenter des traces de ferrite ∂ (Delta), donc de ferromagnétisme.

Utilisations

Ses nombreux domaines d'utilisation vont des industries chimiques, pharmaceutiques, alimentaires et pétrochimiques aux travaux de la pâte à papier et de l'industrie textile. Il est également largement utilisé dans les industries de la micromécanique, de l'appareillage et de l'industrie horlogère.

Normes

 Numéro matière
 1.4404

 EN 10083-3
 X2CrNiMo 17-12-2

 ISO
 7153-1 (P)

 DIN /AFNOR
 X2CrNiMo 17-12-2

 ALSI/SAF
 2461

AISI/SAE 316L ASTM F 899 NF S 94-090 JIS SUS 316

Composition chimique

(%poids)

С Si Ρ S Cr Fe Mn Ni Mo Ν 16.5 solde max. max. max. max. max. 10.0 2.00 max. 0.030 1.00 2.00 0.045 0.015 18.0 13.0 2.50 0.10

Dimensions et exécutions

Standard: barres de 3 m (+50/0 mm), torches pour Escomatic

Propriétés mécaniques : Rm 650-950 MPa

Barres Ø < 1.0 - 9.0 mm: ISO h8
 Barres Ø ≥ 2.00 mm: ISO h6 (h7)

Fils Ø ≥ 0.80 max 3.00 mm: ISO fg7, torches pour Escomatic

Malrond max:
 ½ tolérance du diamètre

Autres tolérances sur demande

Conditionnement

Standard: barres de 3 m (+50/0 mm), torches pour Escomatic

Barres Ø ≥ 2.00 mm: étiré à froid, meulé, poli, Ra max 0.4 μm (N5)

pointées 60°, chanfreinées 45° état de surface: étiré à froid

Barres < 2.00 mm: état de surface: étiré à froid
 Ø ≥ 6.00 mm: exécution SWISSLINE

• Fils Ø < max 3.00 mm: état de surface: étiré à froid, torches pour Escomatic

Autres exécutions sur demande

Disponibilité

Dimensions standards en stock, voir: Programme de livraison

Conditions de coupe

Usinabilité: relativement difficile, satisfaisante à l'état écroui

Vitesse de coupe: $V_c \approx 40$ - 65 m/min. Lubrification: choix individuel

 Les conditions de coupe optimales sont fonction de la machine-outil, des outils de coupe, de la taille du copeau du lubrifiant et des tolérances et/ou de l'état de surface à réaliser.

1.4404/AISI 316L – Acier inoxydable austénitique à bas S

Propreté de la structure

L'acier CHRONIFER® Special 04 est un acier relativement propre permettant de réaliser des états de surface polis satisfaisants.

Grosseur du grain

Selon ASTM E47:

Fils étirés à froid ASTM Nr. ≥ 7-8

Ferrite δ (Delta)

L'acier CHRONIFER® Special 04 peut contenir des traces de ferrite ∂(Delta). Les formules d'équivalence du Cr_{eq} et Ni_{eq} du diagramme de Schaeffler-De Long, tous revus et modifiés par Otokumpu, permettent de les calculer:

- Creq = 1.5Si + Cr + Mo + 2Ti + 0.5Nb
- $Ni_{eq} = 30(C + N) + 0.5Mn + Ni + 0.5(Cu + Co)$
- Ferrite Number FN ou $\%_{\text{vol}}$ Ferrite δ (Delta) FN = ([{1.375 (Creq 16} + 10] Nieq) 2.586

Des valeurs négatives de FN indiquent l'absence de ferrite δ (Delta).

PREN

- PREN = %Cr + 3.3%Mo + 18%N
- Valeurs clés calculées: min. 23.1 / max. 28.0

Formage

À chaud, forgeage p. ex.: 950 – 1120°C, trempe/refroidissement rapide

• Si la température devrait chuter en-dessous de 800°C, un recuit de remise en solution devrait être effectué préventivement.

À froid: sans limitations, diagramme de durcissement par écrouissage p. 3.

Recuit de mise en solution

Recuit de mise en solution: 1040-1070°C, trempe/refroidissement rapide

- Un taux d'écrouissage supérieur à 10 15% est recommandé, afin de réduire le risque d'un grossissement du grain trop intense et rapide.
- Le domaine de température inférieure à 650°C doit être évité, car il peut conduire à la précipitation de carbures aux joints des grains, phase σ(Sigma).
- La formation de la phase σ(Sigma) conduit à une fragilité, réduction de la ductilité et de la résistance à la corrosion. Dans ce cas, un recuit de mise en solution à 1040-1070°C est recommandé.
- Dans le cas d'une sensibilisation indésirable, il est recommandé d'effectuer un traitement de remise en solution à 1040-1070°C.

Durcissement

L'acier CHRONIFER® Special 04 ne peut pas être durci thermiquement. Il ne peut l'être que par écrouissage à froid. Voir courbes de durcissement p. 3.

Microstructures

Pour l'usinage et le polissage: barres et fils de décolletage écrouis à froid: austénite à l'état recuit et écroui à froid

Polissage

L'acier CHRONIFER® Special 04 est approprié à tous les modes de polissage. Polissage électrolytique: La ferrite $\partial(Delta)$ et/ou la phase $\sigma(Sigma)$ sont mises en relief lors d'un polissage électrolytique.

- Cet acier peut contenir des traces de ferrite ∂(Delta).
- Dans le cas d'une formation involontaire de la Phase $\sigma(Sigma)$, un traitement de remise en solution à 1040-1070°C peut être nécessaire afin de na pas compromettre tant la qualité du polissage que la résistance à la corrosion

Plus d'info.

Soudage

Facilement réalisable

1.4404/AISI 316L – Acier inoxydable austénitique à bas S

Figure 1
Durcissement par
déformation plastique
à froid

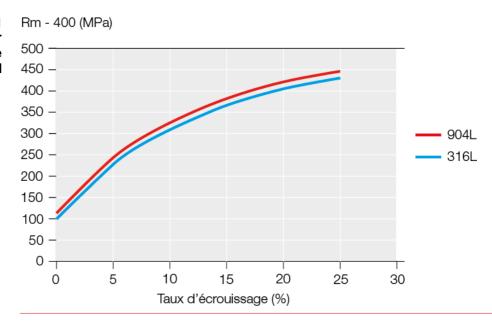
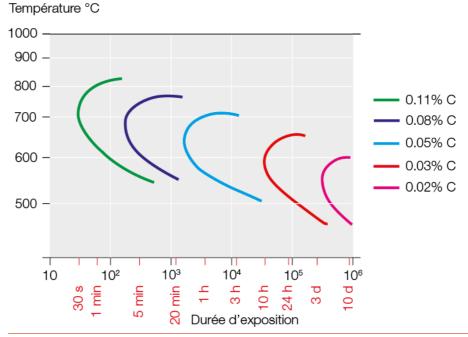



Figure 2 Sensibilisation

Précipitation de carbures aux joints de grains La sensibilisation de la microstructure par précipitation de carbures aux joints des grains - précipitation inter-granulaire - a lieu dans des domaines de température fonction de la teneur en C de l'acier. Ces domaines de température doivent être évités, car les zones entourant ces carbures inter-granulaires sont le site de la corrosion intergranulaire, en milieux chlorés notamment. Ils induisent également une perte de ductilité et conduisent à des problèmes lors de tous les modes de polissage fins, y compris le polissage électrolytique.

Dans le cas du CHRONIFER[®] Special 04, le domaine de température de sensibilisation est compris entre 650 à 400°C. La durée d'exposition critique est ≥10 heures.

1.4404/AISI 316L – Acier inoxydable austénitique à bas S

Marquage laser

L'échauffement dans la zone affectée par la chaleur HAZ (Heat Affected Zone) d'un marquage laser normal ne devrait pas affecter la microstructure. Marquage laser: Plus d'info.

Oxydation superficielle

Une oxydation thermique produit des oxydes superficiels qui doivent être éliminés mécaniquement ou chimiquement par décapage.

 Les oxydes colorés ou la calamine peuvent réduire considérablement la résistance à la corrosion.

Décapage - Passivation

Les procédés et produits utilisés doivent être adaptés aux exigences des aciers inoxydables austénitiques. <u>Plus d'info.</u>

- Une réaction "Flash back" potentielle peut être évitée en effectuent toujours un décapage avant la passivation.
- Un traitement de passivation n'est pas nécessaire après un polissage électrolytique.

Résistance à la corrosion

- Etat de surface optimal: Surface propre, polie et passivée. Plus d'info.
- La résistance à la corrosion indicative de l'acier CHRONIFER[®] Special 04 dans quelques milieux types d'utilisation comme ceux de composants de l'habillage de la montre sont indiqués ci-dessous.

Type de corrosion	Etat de la matière Résistance à la corr			
Corrosion par piqûres	tous	bonne		
Brouillard salin	tous	satisfaisante à moyenne		
Eau de mer	tous	satisfaisante à moyenne		
Corrosion sous tension	recuit	bonne		
	écroui	sensibilité croissant avec ɛ		

Corrosion galvanique

 Cet acier est moins noble que les aciers CHRONIFER[®] Special 35 et Special 35 P, il peut dans certains assemblages et montages être sujet à des phénomènes de corrosion galvanique en leur présence.

Précautions élémentaires

- La protection la plus simple et efficace et de toujours s'assurer que la surface soit propre et polie.
- Bien nettoyer les pièces et composants (ne pas tolérer de résidus d'utilisation) et les sécher.
- N'utiliser que des solutions de nettoyage, lavage et de désinfection ne contenant pas de chlore.

Magnétisme

Ferromagnétisme dû à la présence de ferrite ∂ (Delta):

- Cet acier peut suivant sa composition exacte présenter des traces de ferrite ∂
 (Delta) ferromagnétique de teneur ≥ 0.5%vol.
- Dans ce cas, l'acier CHRONIFER® Special 04 peut présenter une perméabilité relative ≥ 1.003

Ferromagnétisme dû à la formation de martensite $\alpha(Alpha)$ ferromagnétique à taux d'écrouissage élevés :

Cet acier fortement écroui peut suivant sa composition et la présence de ferrite ∂
 (Delta), présenter des traces de martensite α (Alpha) ferromagnétique de perméabilité relative > 1.005.

Plus d'info.

1.4404/AISI 316L – Acier inoxydable austénitique à bas S

Propriétés physiques

Propriétés	Unité	Température (°C)				
		20	200	300	400	500
Densité	g cm ⁻³	7.98				
Module élastique E	GPa	200	186	179	172	165
Module de torsion G*	GPa	117				
Coefficient de Poisson V		0.27-0.28				
Résistance électrique	Ω .mm ² .m ⁻¹	0.75				
Dilatation thermique	m m ⁻¹ K ⁻¹	20-100°C	20-200°C	20-300°C	20-400°C	20-500°C
	10 ⁻⁶	16	16.5	17	17.5	18
Conductibilité thermique	W.m ⁻¹ .K ⁻¹	15			15.2	
Chaleur spécifique	J.kg ⁻¹ .K ⁻¹	500				
Intervalle de fusion	°C	1375-1400				
Magnétisme	Etat recuit: présence de ferrite ∂ (Delta) ferromagnétique Perméabilité relative: ≥ 1.003 Etat écroui: présence possible de martensite α (Alpha) ferromagnétique. Perméabilité relative: > 1.005					

Renonciation: Les informations et données de cette fiche technique ne sont qu'indicatives. Elles ne sont pas un mode d'emploi. Celui-ci doit être établi dans chaque cas par l'utilisateur de la matière.