

1.6358/ASTM A-538 Acier martensitique à durcissement structural

Caractéristiques et Particularités

L'acier DURIMPHY est un acier martensitique à bas C à durcissement structural. La martensite de Fe-Ni obtenue par recuit à 830°C/trempe, est ductile. Elle permet un usinage facile et un écrouissage à froid jusqu'à des taux de déformation plastique très élevés. Le durcissement structural effectué à la température type de 480°C permet de tirer profit des effets cumulés de l'écrouissage, y compris celui du formage, et du durcissement structural pour atteindre de manière reproductible des duretés de 52-55 HRc. Ce durcissement ne crée quasi pas de distorsions et de variations dimensionnelles. A l'état durci, cet acier à haute Rm et R_{0.2} possède une bonne ténacité, une tenue à la fatigue supérieure et est exempt d'une transition ductile-fragile jusqu'aux températures cryogéniques les plus basses. Sa température d'utilisation au continu est de max 400°C. L'acier DURIMPHY peut facilement être soudé ou brasé dur.

Utilisation

L'utilisation de l'acier DURIMPHY est très vaste allant de l'aérospatial à la micromécanique de haute précision, dont des composants pour mouvements horlogers. Cependant, sa résistance à la corrosion relativement basse peut limiter son utilisation.

Normes

No. de matière 1.2709

EN/DIN X3NiMoTi 18-9-5

ASTM/ANSI A-538 AMS 6514 UNS K93160

Composition chimique

(‰_{poids})

C Ρ S Si Mn Ni Co Mo Τi autres Fe max. max. max. max. max. 18.00 8.50 4.60 0.50 max. solde 0.03 0.10 0.10 0.010 0.010 19.00 9.50 5.20 0.80 1.20

Dimensions et exécutions

Barres rondes:

3 – 13 mm, étirées à froid de 3 m redressées et meulées h6

Rm et A% voir Figure 2

Disponibilité

Dimensions standard en stock: voir programme de livraison

Résistance mécanique et usinage

- À l'état recuit, l'acier DURIMPHY s'usine facilement grâce à son rapport R_{0.2}/Rm de ≥0.98% qui favorise la formation du copeau.
- À l'état écroui à froid, son usinabilité est fonction de la résistance mécanique Rm.

Usinage

Usinabilité: favorable

Vitesse de coupe: lente, Vc ≈ 20-40 m/min Avance: modérée à forte Huile-lubrifiant de coupe: choix individuel

- Les conditions de coupe optimales sont fonction de la machine-outil, des outils de coupe, de la taille du copeau, du lubrifiant et des tolérances et/ou de l'état de surface à réaliser.
- La ténacité de l'acier DURIMPHY est élevée. Par conséquent, son usinage requiert des machines-outils et des outillages les plus rigides possibles.

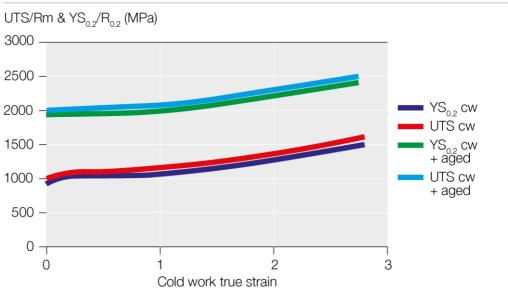
Déformation et formage

À chaud: Forgeage: 1050-850°C

Température minimum de forgeage/déformation à chaud: 850°C À froid: Température de déformation à froid: max. 400°C

1.6358/ASTM A-538 Acier martensitique à durcissement structural

Elaboration


Fusion: VIM (Vacuum Induction Melting) + Refusion: VAR (Vacuum Arc Remelting)

Propreté de la structure

Microstructure propre, alliage fondu et refondu sous vide

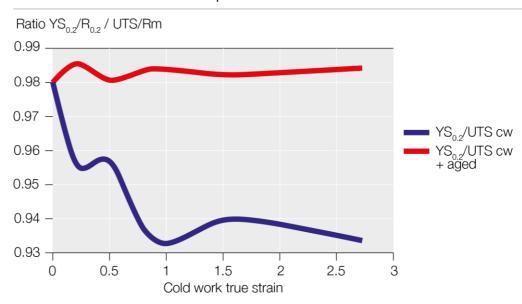
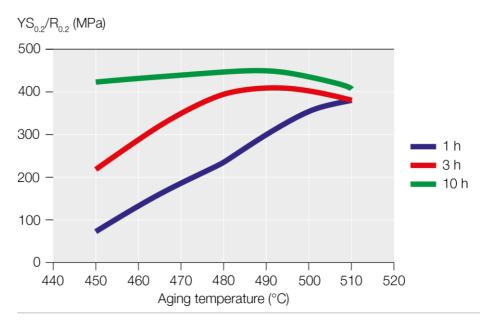

Durcissement

Figure 1 Influence de l'écrouissage à froid et du vieillissement sur UTS/Rm et YS_{0.2}/R_{0.2} vieilli à 480°C/3h

- La caractéristique mécanique fondamentale de l'acier DURIMPHY est, dans tous ses états métallurgiques recuit, écroui et vieilli, sa limite élastique R_{0.2} très proche de Rm.
- L'utilisation de l'acier DURIMPHY repose souvent sur sa limite élastique élevée R_{0.2} qui favorise de nombreux comportements, dont l'usinabilité.
- Comme montre la Figure 2 le rapport YS_{0.2}/R_{0.2} / UTS/Rm se situe au-dessus de 98% de Rm tant à l'état écroui que vieilli 480°C/3h.

Figure 2 Rapport YS_{0.2}/R_{0.2} / UTS/Rm


 Le durcissement structural de l'acier DURIMPHY est dû primairement à la précipitation du composé intermétallique du type Ni₃Ti de taille nanométrique et secondairement de celui du type Fe₂Mo, lui aussi de taille nanométrique.

1.6358/ASTM A-538 Acier martensitique à durcissement structural

Figure 3 Influences relatives de la température et de la durée du vieillissement sur YS_{0.2}/R_{0.2}

Traitements thermiques Recuit

Recuit: 830°C/1-4h/refroidissement rapide

830°C/0.5-1h/refroidissement rapide pour les petites pièces

• Mise en solution: 830°C/1-4h/refroidissement rapide

• Un refroidissement rapide prévient la rétention d'austénite.

Microstructure

États de livraison: recuit, structure martensitique + martensite écrouie Microstructure d'usinage: Martensite douce, recuit à 830°C/refroidissement rapide Microstructure optimale pour le polissage: Martensite douce de recuit ou déformée

 L'acier DURIMPHY est bien adapté aux exigences du polissage horloger haut de gamme.

Vieillissement

- Vieillissement: 480°C/3h traitement optimal de vieillissement
- L'activation et l'intensité de la réaction de vieillissement sont indépendantes d'un écrouissage à froid ou d'une déformation plastique préalable lors d'un formage.
- Une durée de vieillissement prolongée a tend à fragiliser cet acier en dégradant progressivement sa résilience.
- Les contributions du vieillissement à Rm et R_{0.2} s'additionnent à celles des états de départ, recuit ou écroui
- Pour chaque état métallurgique de départ, les contributions du vieillissement optimal à 480°C/3h, sont additives, en moyenne de 940 MPa sur Rm et de 920 MPa sur R_{0.2}.

Atmosphères de protection

- L'alliage DURIMPHY est sensible à la fragilisation par l'hydrogène.
- Les atmosphère de protection H2 et ammoniac craqué sont à proscrire.
- Un traitement de dégorgeage à 150°C/1-3h permet de purger l'acier de l'hydrogène capté.

Marquage laser

 L'échauffement de la Zone Affectée Thermiquement (ZAT) dû à un marquage laser normal, sans surchauffe, ne devrait normalement pas affecter la microstructure et les propriétés mécaniques, celles de fatigue notamment. Plus d'info.

1.6358/ASTM A-538 Acier martensitique à durcissement structural

Figure 4 Vieillissement Contraction volumique

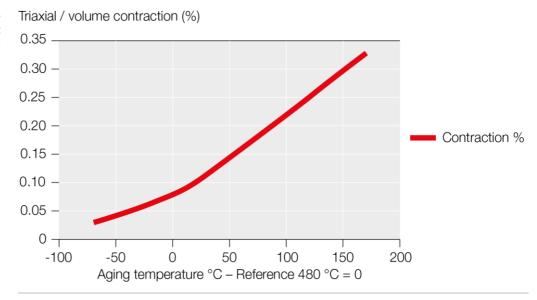


Figure 5 Influence du temps de maintien à 480°C sur la résilience Charpy

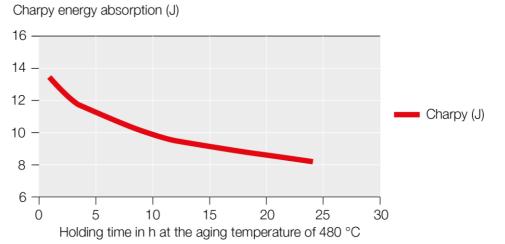
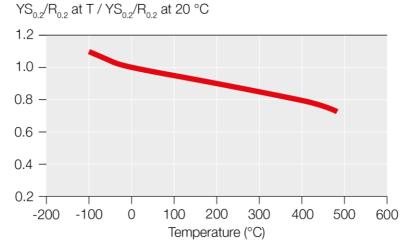



Figure 6 Influence de la température d'utilisation sur la limite élastique

Influence du rapport YS_{0.2}/R_{0.2} à T / YS_{0.2}/R_{0.2} à 20°C

1.6358/ASTM A-538 Acier martensitique à durcissement structural

Résistance à la corrosion

• L'acier DURIMPHY n'a qu'une résistance à la corrosion limitée. Exposé à l'humidité ambiante il développe rapidement une couche de rouille.

Solutions de décapage

Solution 1:

Acide chlorhydrique : 4 parts Eau : 3 parts Température : 70°C

Maintien: 20-30 minutes

Rinçage intensif et séchage

Solution 2:

Acide nitrique 70%: 5 parts
Acide fluorhydrique 5%: 1 part
Eau: 14 parts
Température: 25-30°C

Maintien: 90-120 secondes

Rinçage intensif et séchage

Solution 3:

Acide sulfurique 93%: 3 parts

78% 4 parts

Eau : 20 parts
Température : 65-75°C
Maintien : 15 minutes

Rinçage intensif et séchage

Solution 4:

Acide sulfurique : 18% Température : 65°C Rincage intensif et séchage

Etat de la surface

 L'acier DURIMPHY étant le plus souvent utilisé pour sa limite élastique R_{0.2} élevée, très proche de la charge de rupture Rm, il est donc péremptoire que sa surface, tant avant décapage qu'après, soit toujours libre de micro-entailles en tous genres, toutes potentiellement préjudiciables à son comportement en service.

Nitrification

 Simultanément au traitement de vieillissement, l'acier DURIMPHY peut être nitrifié pour former une couche dure en surface de 800 Hv, qui améliore sa résistance à l'usure notamment.

Soudage

- L'acier DURIMPHY peut être facilement soudé.
- Il est recommandé d'effectuer un recuit à 820°C après soudage.

Brasage

- L'acier DURIMPHY peut être aisément brasé.
- Par précaution, un traitement de dégazage à 150°C est recommandé après cette opération.

1.6358/ASTM A-538 Acier martensitique à durcissement structural

Propriétés physiques

Propriétés	Unité	Température (°C)				
		20	200	300	400	500
Densité	g cm ⁻³	8.0				
Module E, écroui + vieilli	GPa	186-190				
Module de cisaillement G		20°C				
état recuit	GPa	72-73				
Coefficient de Poisson	-	0.30				
Conductivité thermique	W.m ⁻¹ .K ⁻¹	20°C	100	200	300	400
	10 ⁻⁶	21	23	26	27	28
			480			
	10 ⁻⁶		28			
Résistance électrique	μΩ.cm	20°C				
état recuit 820°C	10 ⁻⁶	60-70				
état vieilli 480°C/3h	10 ⁻⁶	35-70	1128	1153	1179	
Coefficient de dilatation	m/m ⁻¹ .K ⁻¹	20-100°C	20-200°C	20-300°C	20-400°C	20-480°C
	10 ⁻⁶	9.9	10.2	10.6	11.0	11.3
Chaleur spécifique	J.kg ⁻¹ .K ⁻¹	460				
Température de Curie	°C	450				
Saturation magnétique	Т	1.9				
Contraction linéaire due						
au vieillissement	%	0.08				
Force coercitive	Oe			A/m		
état recuit		23-24		1750-2700		
état vieilli		21-54		1670-4300		
Rémanence Br	Т	0.55				
Domaine de fusion	°C	1430-1460				

Renonciation: Les informations et données de cette fiche technique ne sont qu'indicatives. Elles ne sont pas un mode d'emploi. Celui-ci doit être établi dans chaque cas par l'utilisateur de la matière.